En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies pour vous proposer des services et offres adaptés à vos centres d'intérêt. En savoir plus et gérer ces paramètres.

Blog de sarah123321

aide blog

  • Restored your battery
    publié le 26/07/2012 à 11:31

     


    Permanent battery defects include high internal resistance, elevated self-discharge, electrical short and capacity fade. Poorly designed chargers, exposure to excess heat, harsh charge and discharge cycles, and inappropriate storage contribute to early aging. Let’s examine the cause of these non-correctable battery problems and explore what we can do to minimize them.
    Low-capacity Cells

    A manufacturer cannot predict the exact capacity when a battery comes off the production line, and this is especially true with lead acid batteries that involve manual assembly. Fully automated cell production in “cleanrooms” also causes performance differences, and as part of quality control, each cell is measured and segregated into categories according to their inherent capacity levels. The high-capacity A-cells are reserved for special applications and sold at premium prices; the large mid-range B-group goes to commercial and industrial markets; and the low-grade C-cells may end up as consumer products in department stores. Cycling will not significantly improve the capacity of the low-end cell, and even though the cell may look good, the buyer must be aware of differences in capacity and quality, which often translate into life expectancy.
    Cell Mismatch, Balancing

    Matching of cells according to capacity is important, especially for industrial batteries. No perfect match is possible, and if slightly off, nickel-based cells adapt to each other after a few charge/discharge cycles similar to the players on a winning sports team. High-quality cells continue to perform longer than the lower-quality counterpart, and the cells degrade at a more even and controlled rate. Lower-grade cells, on the other hand, diverge more quickly with use and time, and failures due to cell mismatch are more widespread. Cell mismatch is a common cause of failure in industrial batteries. Manufacturers of professional power tools and medical equipment are careful in the choice of cells to attain good battery reliability and long life.

    Let’s look at what a weak cell does in a pack that is strung together with strong ones. The weak cell holds less capacity and is discharged more quickly than the strong brothers. Going empty first, the strong brothers overrun this feeble sibling and the resulting current on a continued discharge pushes the weak cell into reverse polarity. Nickel-cadmium can tolerate a reverse voltage of minus 0.2V and a reverse current of a few milliamps, but exceeding this level will cause a permanent electrical short. On charge, the weak cell reaches full charge first and it goes into heat-generating over-charge while the strong brothers still accept charge and stay cool. The low cell experiences a disadvantage on both charge and discharge. It continues to weaken until finally giving up the struggle.

    The capacity tolerance between cells in an industrial battery should be +/– 2.5 percent. High-voltage packs designed for heavy loads and wide adverse temperature ranges should have lower tolerances. There is a strong correlation between cell balance and longevity.

    Li-ion cells share similar deficiencies with nickel-based systems and need management. The mandatory protection circuit supervises the serially connected cells by clamping the voltage when exceeding 4.25 and 4.35V on charge, and disconnecting the pack from discharge when the weakest cell drops to between 2.50 and 2.80V/cell. This prevents the stronger cells from pushing the depleted cell into reverse polarization. The protection circuit acts like a guardian angel that shields the weaker siblings from being bullied by the stronger brothers. This may be help to explain why Li-ion packs for power tools last longer than nickel-based batteries, which normally do not have a protection circuit.
    The capacity of quality Li-ion cells is consistent and the self-discharge is low. A problem arises when the cells exhibit a discrepancy in self-discharge. This can be attributed to lower-quality cells or high-temperature spots in a large automotive battery, which hastens aging. Balancing is required and there are two methods: Passive balancing bleeds the high-voltage cells; active balancing shuttles the extra charge from higher-voltage cells to the lower-voltage cells without burning the energy. Active balancing is the preferred method on EVs.

    With use and time all batteries become mismatched, and this also applies to lead acid. Shorted cells and those having high self-discharge are a common cause of cell imbalance and lead to subsequent failure. Manufacturers of golf cars, aerial work platforms, floor scrubbers and other battery-powered vehicles recommend an equalizing charge of 3–4 hours if the voltage difference between the cells is greater than +/– 0.10V, or if the specific gravity varies more than 10 points (0.010 on the SG scale). An equalizing charge is a charge on top of a charge that brings all cells to full-charge saturation. This service must be administered with care because excessive charging can harm the battery. A difference in specific gravity of 40 points poses a performance problem and the cell is considered defective. A 40-point difference is one cell having an SG of 1.200 and another 1.240. A charge may temporarily cover the deficiency, but the flaw will resurface after a few hours of rest due to high self-discharge.
    Shorted Cells

    Manufacturers are at a loss to explain why some cells develop high electrical leakage or a short while still new. The culprit might be foreign particles that contaminate the cells during manufacture, or rough spots on the plates that damage the delicate separator. Clean rooms, improved quality control at the raw material level, and minimal human handling during the manufacturing process have reduced the “infant mortality rate.”
    Applying momentary high-current bursts to repair a shorted NiCd or NiMH cell has been tried but offers limited success. The short may temporarily evaporate but the damage in the separator remains. After service, the repaired cell may charge normally and reach correct voltages; however, high self-discharge will likely drain the battery and the short will return.

    It is not advised to replace a shorted cell in an aging pack because of cell matching. The new cell will always be stronger than the others. Consider the biblical verses: “No one sews a patch of unshrunk cloth on an old garment. If he does, the new piece will pull away from the old, making the tear worse. And no one pours new wine into old wineskins. If he does, the wine will burst the skins, and both the wine and the wineskins will be ruined” (Mark 2:21, 22 NIV). Replacing faulty cells often leads to battery failures within six months. It’s best not to disturb the cells. Instead, allow them to age naturally as an intact family.

    Shorts or high leakage in a Li-ion cell are uncommon. If this occurs, the cell becomes unstable and a massive amount of power can dissipate, leading to a possible venting thermal breakdown. Such a leak can be compared to drilling a small pinhole into a high-pressure gas pipeline and holding a match to it. The resulting explosion could rupture the pipe. Similarly, the rushing current in the cell heats up the tiny malfunction, causes a major leak and releases all energy within seconds. (Read more about Safety circuits for modern batteries)

    The loss of electrolyte in a flooded lead acid battery occurs through gassing, as hydrogen escapes during charging and discharging. Venting causes the electrolyte to become more concentrated and the balance must be restored by adding clean water. Do not add electrolyte, as this would upset the specific gravity and shorten battery life through excessive corrosion.

    Permeation, or loss of electrolyte in sealed lead acid batteries, is a recurring problem that is often caused by overcharging. Careful adjustment of charging and float voltages, as well as operating at moderate temperatures, reduces this failure. Replenishing lost liquid in VRLA batteries by adding water has limited success. Although the lost capacity can often be regained with a catalyst, tampering with the cells turns the stack into a high-maintenance project that needs constant supervision.

    (0) commentaires


L’accès et l’utilisation du forum sont réservés aux membres d'Aujourdhui.com.
Vous pouvez vous inscrire gratuitement en cliquant ici.

Si vous êtes déjà membre, connectez-vous ici :

votre pseudo : 
votre mot de passe :  
(envoyé par email) 

Si vous avez oublié votre mot de passe, cliquant ici.



ARCHIVES

  • Sélectionner un mois et une année :  
         



Aujourdhui.com en 1 clic !
Service Client
"Jean-Michel Berille, le responsable
des télé-conseillers."
ils ont réussi leur régime et cela les rend heureux
- Méthode Savoir Maigrir


ACCUEIL
  • Accueil

COACHING
  • Menus régime
  • Liste de courses
  • Suivi des mensurations
  • Réglette de régime
  • Exercices physiques
  • Compteur de calories
  • Calcul poids idéal
  • Calcul IMC
  • Courbe de poids
  • Calcul IMG
  • Grossesse mois par mois
PREMIUM
  • Régime Savoir Maigrir
  • Méthode Montignac
  • Méthode MentalSlim
  • Méthode Slim Data
  • Méthodes Naturelles
  • Méthode Chrono-Géno-Nutrition
  • Coaching Grossesse

FORUM PREMIUM
  • Forum Savoir Maigrir
  • Forum Montignac
  • Forum MentalSlim
  • Forum SLIM data
COMMUNAUTÉ
  • Groupes
  • Blogs
  • Rencontres
  • Bons plans
  • Témoignages
  • Quiz

FORUM
  • Forum minceur
  • Forum cuisine
  • Forum grossesse
  • Forum maman bébé
  • Forum psycho
  • Forum forme santé
  • Forum beauté
  • Forum communauté

RUBRIQUES

  • Minceur
  • Nutrition
  • Cuisine
  • Psycho & tests
  • Forme & santé
  • Grossesse
  • Maman & bébé
  • Beauté

DOSSIERS
  • Dossiers minceur
  • Dossiers nutrition
  • Dossiers psycho
  • Dossiers forme & santé
  • Dossiers grossesse
  • Dossiers maman bébé
  • Dossiers beauté
GUIDES
  • Produits minceur
  • Régime minceur
  • Appareils minceur
  • Thèmes de cuisine
  • Prénoms
  • Maternités
  • Tests grossesse
  • Professionnels psy

PLUS
  • Jeux
  • Infos
  • Astro
  • Shopping

Publicité

  • accueil
  • plan du site
  • envoyer à une amie
  • témoignages
  • presse
  • contact
  • aide
  • conditions d'utilisation
  • recrutement

© 2011 copyright et éditeur AUJOURDHUI.COM / powered by AUJOURDHUI.COM
Reproduction totale ou partielle interdite sans accord préalable.
Aujourdhui.com collecte et traite les données personnelles dans le respect de la loi Informatique et Libertés (Déclaration CNIL No 1787863).